Principal Component Analysis (PCA) in the Context of Radar Polarimetry

نویسندگان

  • W.-M. Boerner
  • E. Lüneburg
  • A. Danklmayer
چکیده

Statistical and computational techniques for revealing the internal structure that underlies the set of random correlated data exists in a great variety at present; and target decomposition theorems, either in the coherent or incoherent formulation, are well established. In spite of this fact a rather innovative and new concept is presented in this contribution. In turn the Principal Component Analysis (PCA) is considered to possibly add value to existing approaches, and it allows for an interpretation of polarimetric synthetic aperture radar measurements using variables obtained via linear transformation. Starting with the Sinclair backscatter matrix S which will be further transformed into the so called target feature vector by stacking column elements of S and generating the covariance matrices averaged over a certain pixel array, we show, how the Sinclair backscatter matrix is decomposed into the sum of a maximum of four 2×2 elementary point scatter matrices which are weighted by the principal components, whereas the variances of these components agree with the eigenvalues of the covariance matrix. This mathematical development defines a decomposition which expresses scattering mechanism from distributed targets in terms of scattering matrices via an incoherent step.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring Gördes Zeolite Sites by Feature Oriented Principle Component Analysis of LANDSAT Images

Recent studies showed that remote sensing (RS) is an effective, efficient and reliable technique used in almost all the areas of earth sciences. Remote sensing as being a technique started with aerial photographs and then developed employing the multi-spectral satellite images. Nowadays, it benefits from hyper-spectral, RADAR and LIDAR data as well. This potential has widen its applicability in...

متن کامل

Prioritizing Effective Factors in the Making Ethical Organizations by Using Combined Method of Interpretative Structural Modeling (ISM) and Principal Component Analysis (PCA)

Nowadays Organizations consider ethical principles in the business environment as an advantage and seek to strengthen it. This requires a coherent, interactive and cognitive understanding of the parts of internal and external environment of organization, which leads to the realization of the rights of the beneficiaries of the organization. The purpose of this paper is prioritize  the factors in...

متن کامل

Measuring gas demand security using Principal Component Analysis (PCA): A case study

Safeguarding the energy security is an important energy policy goal of every country. Assuring sufficient and reliable resources of energy at affordable prices is the main objective of energy security. Due to such reasons as special geopolitical position, terrorist attacks and other unrest in the Middle East, securing Iran’s energy demand and increasing her natural gas exports have turned into ...

متن کامل

Study of Physical and Chemical Soil Properties Variations Using Principal Component Analysis Method in the Forest, North of Iran

The field study was conducted in one district of Educational-Experimental forest at Tehran University (Kheirood-Kenar forest) in the North of Iran. Eighty-five soil profiles were dug in the site of study and several chemical and physical soil properties were considered. These factors included: soil pH, soil texture, bulk density, organic carbon, total nitrogen, extractable phosphorus and depth ...

متن کامل

Evaluating Dye Concentration in Bicomponent Solution by PCA-MPR and PCA-ANN Techniques

This paper studies the application of principal component analysis, multiple polynomial regression, and artificial neural network ANN techniques to the quantitative analysis of binary mixture of dye solution. The binary mixtures of three textile dyes including blue, red and yellow colors were analyzed by PCA-Multiple polynomial Regression and PCA-Artificial Neural network PCA-ANN methods. The o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007